The neurogenic response of cardiac resident nestin(+) cells was associated with GAP43 upregulation and abrogated in a setting of type I diabetes
نویسندگان
چکیده
BACKGROUND Cardiac nestin(+) cells exhibit properties of a neural progenitor/stem cell population characterized by the de novo synthesis of neurofilament-M in response to ischemic injury and 6-hydroxydopamine administration. The induction of growth associated protein 43 (GAP43) was identified as an early event of neurogenesis. The present study tested the hypothesis that the de novo synthesis of neurofilament-M by nestin(+) cells was preceded by the transient upregulation of GAP43 during the acute phase of reparative fibrosis in the infarcted male rat heart. Secondly, a seminal feature of diabetes is impaired wound healing secondary to an inadequate neurogenic response. In this regard, an additional series of experiments tested the hypothesis that the neurogenic response of cardiac nestin(+) cells was attenuated in a setting of type I diabetes. METHODS The neurogenic response of cardiac nestin(+) cells was examined during the early phase of reparative fibrosis following permanent ligation of the left anterior descending coronary artery in the adult male rat heart. The experimental model of type I diabetes was created following a single injection of streptozotocin in adult male rats. The impact of a type I diabetic environment on the neurogenic response of cardiac nestin(+) cells was examined during myocardial infarction and following the administration of 6-hydroxydopamine. RESULTS During the early phase of scar formation/healing, the density of GAP43/nestin(+) fibres innervating the peri-infarct/infarct region was significantly increased, whereas neurofilament-M/nestin(+) fibres were absent. With ongoing scar formation/healing, a temporal decrease of GAP43/nestin(+) fibre density and a concomitant increase in the density of innervating neurofilament-M/nestin(+) fibres were observed. The neurogenic response of cardiac nestin(+) cells during scar formation/healing was inhibited following the superimposition of type I diabetes. The de novo synthesis of neurofilament-M by nestin(+) cells after 6-hydroxydopamine administration was likewise attenuated in the heart of type I diabetic rats whereas the density of GAP43/nestin(+) fibres remained elevated. CONCLUSION The transient upregulation of GAP43 apparently represents a transition event during the acquisition of a neuronal-like phenotype and a type I diabetic environment attenuated the neurogenic response of cardiac nestin(+) cells to ischemia and 6-hydroxydopamine.
منابع مشابه
Evaluation of Neurogenic Potential of Human Umbilical Cord Mesenchymal Cells a Time- and Concentration- Dependent Manner
Background: Retinoic acid as one of the most important regulators for cell differentiation was examined in this study for differentiation of human umbilical mesenchymal cells (hUCM). Methods: After isolation, hUCM were evaluated for mesenchymal stem cell properties by flow cytometry and alkaline phosphatase assay. Also, doubling time of the cells and their differentiation potential into adipoge...
متن کاملتمایز بنیاختههای جنینی انسان به سلولهای مولد انسولین
Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated se...
متن کاملIslet Amyloid Polypeptide is not a Target Antigen for CD8+ T-Cells in Type 2 Diabetes
Background: Type 2 diabetes (T2D) is a chronic metabolic disorder in which beta-cells are destroyed. The islet amyloid polypeptide (IAPP) produced by beta-cells has been reported to influence beta-cell destruction. Objective: To evaluate if IAPP can act as an autoantigen and therefore, to see if CD8 + T-cells specific for this protein might be present in T2D patients. Methods: Peripheral blood ...
متن کاملThe Impact of Immune Response on HTLV-I in HTLV-I-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP)
Human T lymphotropic virus type I (HTLV-I) is a retrovirus which is associated with adult T cells leukaemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a minority of HTLV-I-infected individuals. It is not clear why a minority of HTLV-I-infected individuals develop HAM/TSP and majority remains lifelong carriers. It seems that the interaction between the v...
متن کاملP 130: The Role of Host T- Cell Lymphocyte in Immunopathogenesis of HTLV-I-Associated Myelopathy/Tropical Spastic Paraparesis
Human T-cell lymphotropic virus type 1 (HTLV-1) is associated with adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Only a limited percentage of infected individuals develop disease in response to the virus while the majority remain asymptomatic and HAM/TSP is the most common clinical manifestation of the virus. HAM/TSP is an inflamma...
متن کامل